With the rapid development of urban rail transit, the intensity and impact range of train-induced vibrations are increasing. Investigating the transmission characteristics and attenuation patterns of these vibrations in track structures aids in understanding train-induced environmental vibrations. This study conducted rail impact experiments on a long sleeper integrated slab of a straight section of a subway tunnel. The hammer struck the rail at various positions, and acceleration sensors recorded the responses of the rail, slab, and tunnel. In order to determine the impact force, the vertical wheel-rail force and the vibration response of track structures were measured. Then, the Lance-LC1304B force hammer was selected for the experiment, and the hammer impact force reached 30 kN, the magnitude of which reached the measured wheel-rail force size for the line. Based on the results of the impact tests, the vibration attenuation characteristics of the track structure were analyzed. Accordingly, reference values for the truncation time and truncation distance in the vehicle-track coupled dynamics model's moving window were provided. By comparing the results of the hammering experiment with the train-induced vibration results, the main excitation frequencies during train operation were determined. These findings provide valuable insights for the development of rail transit systems.