To address the challenges of low accuracy and the difficulty in balancing a large field of view and long distance when tracking high-speed moving targets with a single sensor, an ROI adaptive digital zoom tracking method is proposed. In this paper, we discuss the impact of ROI on image processing and describe the design of the ROI adaptive digital zoom tracking system. Additionally, we construct an adaptive ROI update model based on normalized target information. To capture target changes effectively, we introduce the multi-scale regional measure and propose an improved particle filter algorithm, referred to as the improved multi-scale regional measure resampling particle filter (IMR-PF). This method enables high temporal resolution processing efficiency within a high-resolution large field of view, which is particularly beneficial for high-resolution videos. The IMR-PF can maintain high temporal resolution within a wide field of view with high resolution. Simulation results demonstrate that the improved target tracking method effectively improves tracking robustness to target motion changes and reduces the tracking center error by 20%, as compared to other state-of-the-art methods. The IMR-PF still maintains good performance even when confronted with various interference factors and in real-world scenario applications.