Research on Mobile Robot Path Planning Based on MSIAR-GWO Algorithm.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Danfeng Chen, Yong Chen, Jun He, Tengyun Li, Junlang Liu, Wenbo Zhu

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: Switzerland : Sensors (Basel, Switzerland) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 80189

Path planning is of great research significance as it is key to affecting the efficiency and safety of mobile robot autonomous navigation task execution. The traditional gray wolf optimization algorithm is widely used in the field of path planning due to its simple structure, few parameters, and easy implementation, but the algorithm still suffers from the disadvantages of slow convergence, ease of falling into the local optimum, and difficulty in effectively balancing exploration and exploitation in practical applications. For this reason, this paper proposes a multi-strategy improved gray wolf optimization algorithm (MSIAR-GWO) based on reinforcement learning. First, a nonlinear convergence factor is introduced, and intelligent parameter configuration is performed based on reinforcement learning to solve the problem of high randomness and over-reliance on empirical values in the parameter selection process to more effectively coordinate the balance between local and global search capabilities. Secondly, an adaptive position-update strategy based on detour foraging and dynamic weights is introduced to adjust the weights according to changes in the adaptability of the leadership roles, increasing the guiding role of the dominant individual and accelerating the overall convergence speed of the algorithm. Furthermore, an artificial rabbit optimization algorithm bypass foraging strategy, by adding Brownian motion and Levy flight perturbation, improves the convergence accuracy and global optimization-seeking ability of the algorithm when dealing with complex problems. Finally, the elimination and relocation strategy based on stochastic center-of-gravity dynamic reverse learning is introduced for the inferior individuals in the population, which effectively maintains the diversity of the population and improves the convergence speed of the algorithm while avoiding falling into the local optimal solution effectively. In order to verify the effectiveness of the MSIAR-GWO algorithm, it is compared with a variety of commonly used swarm intelligence optimization algorithms in benchmark test functions and raster maps of different complexities in comparison experiments, and the results show that the MSIAR-GWO shows excellent stability, higher solution accuracy, and faster convergence speed in the majority of the benchmark-test-function solving. In the path planning experiments, the MSIAR-GWO algorithm is able to plan shorter and smoother paths, which further proves that the algorithm has excellent optimization-seeking ability and robustness.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH