Long-Term Energy Consumption Minimization Based on UAV Joint Content Fetching and Trajectory Design.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Abuzar B M Adam, Gezahegn Abdissa Bayessa, Rong Chai, Qianbin Chen, Elhadj Moustapha Diallo, Chengchao Liang

Ngôn ngữ: eng

Ký hiệu phân loại: 610.736 Long-term care nursing

Thông tin xuất bản: Switzerland : Sensors (Basel, Switzerland) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 80222

Caching the contents of unmanned aerial vehicles (UAVs) could significantly improve the content fetching performance of request users (RUs). In this paper, we study UAV trajectory design, content fetching, power allocation, and content placement problems in multi-UAV-aided networks, where multiple UAVs can transmit contents to the assigned RUs. To minimize the energy consumption of the system, we develop a constrained optimization problem that simultaneously designs UAV trajectory, power allocation, content fetching, and content placement. Since the original minimization problem is a mixed-integer nonlinear programming (MINLP) problem that is difficult to solve, the optimization problem was first transformed into a semi-Markov decision process (SMDP). Next, we developed a new technique to solve the joint optimization problem: option-based hierarchical deep reinforcement learning (OHDRL). We define UAV trajectory planning and power allocation as the low-level action space and content placement and content fetching as the high-level option space. Stochastic optimization can be handled using this strategy, where the agent makes high-level option selections, and the action is carried out at a low level based on the chosen option's policy. When comparing the proposed approach to the current technique, the numerical results show that it can produce more consistent learning performance and reduced energy consumption.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH