Numerous studies have previously explored the perception of horizontal movements. This includes research on Redirected Walking (RDW). However, the challenge of replicating the sensation of vertical movement has remained a recurring theme. Many conventional methods rely on physically mimicking steps or slopes, which can be hazardous and induce fear. This is especially true when head-mounted displays (HMDs) obstruct the user's field of vision. Our primary objective was to reproduce the sensation of ascending a slope while traversing a flat surface. This effect is achieved by giving the users the haptic sensation of gripping a tilted handrail similar to those commonly found on ramps or escalators. To achieve this, we developed a walker-type handrail device capable of tilting across a wide range of angles. We induced a cross-modal effect to enhance the perception of walking up a slope. This was achieved by combining haptic feedback from the hardware with an HMD-driven visual simulation of an upward-sloping scene. The results indicated that the condition with tactile presentation significantly alleviated fear and enhanced the sensation of walking uphill compared to the condition without tactile presentation.