Improving 3D Reconstruction Through RGB-D Sensor Noise Modeling.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Fahira Afzal Maken, Simon Dunstall, David Howard, Sundaram Muthu, Chuong Nguyen, Lars Petersson, Changming Sun, Jinguang Tong, Russell Tsuchida, Shan Wang

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: Switzerland : Sensors (Basel, Switzerland) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 80369

High-resolution RGB-D sensors are widely used in computer vision, manufacturing, and robotics. The depth maps from these sensors have inherently high measurement uncertainty that includes both systematic and non-systematic noise. These noisy depth estimates degrade the quality of scans, resulting in less accurate 3D reconstruction, making them unsuitable for some high-precision applications. In this paper, we focus on quantifying the uncertainty in the depth maps of high-resolution RGB-D sensors for the purpose of improving 3D reconstruction accuracy. To this end, we estimate the noise model for a recent high-precision RGB-D structured light sensor called Zivid when mounted on a robot arm. Our proposed noise model takes into account the measurement distance and angle between the sensor and the measured surface. We additionally analyze the effect of background light, exposure time, and the number of captures on the quality of the depth maps obtained. Our noise model seamlessly integrates with well-known classical and modern neural rendering-based algorithms, from KinectFusion to Point-SLAM methods using bilinear interpolation as well as 3D analytical functions. We collect a high-resolution RGB-D dataset and apply our noise model to improve tracking and produce higher-resolution 3D models.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH