Design Analysis and Isotropic Optimization for Miniature Capacitive Force/Torque Sensor.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Hyouk Ryeol Choi, Yong Bum Kim, Seung Yeon Lee, Dongyeop Seok, Jaeyoon Shim, Jae Yoon Sim

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: Switzerland : Sensors (Basel, Switzerland) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 80376

A capacitive six-axis force/torque (F/T) sensor has favorable characteristics for miniature design. However, when designing small-sized force/torque sensors, anisotropy among the six axes can lead to uneven sensitivity across each axis. This is due to increased crosstalk errors, which degrade sensor performance. To design a miniature six-axis force/torque sensor, it is essential to analyze the isotropic relationships between the six-axis forces/torques and the capacitance change to reduce crosstalk errors. This paper presents a miniature capacitive six-axis F/T sensor optimized for isotropy. It also establishes a systematic method for designing sensing electrodes. The sensor's deformable structure is analyzed using Castigliano's beam theory, and design parameters are optimized with isotropy analysis of the deformable part. The criteria are also presented, including selecting the electrode area and initial gap using linear equations derived from capacitance change analysis. The optimized miniature F/T sensor is calibrated using a neural network-based calibration method, and its accuracy errors are compared to a reference sensor. The design framework provides a foundation for future developments in miniature sensors.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH