Towards Explainable Artificial Intelligence for GNSS Multipath LSTM Training Models.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Zhi-Hang Gao, Dah-Jing Jwo, He-Sheng Wang

Ngôn ngữ: eng

Ký hiệu phân loại: 201.7 Attitudes of religions toward social issues formerly 291.171

Thông tin xuất bản: Switzerland : Sensors (Basel, Switzerland) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 80412

 This paper addresses the critical challenge of understanding and interpreting deep learning models in Global Navigation Satellite System (GNSS) applications, specifically focusing on multipath effect detection and analysis. As GNSS systems become increasingly reliant on deep learning for signal processing, the lack of model interpretability poses significant risks for safety-critical applications. We propose a novel approach combining Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) cells with Layer-wise Relevance Propagation (LRP) to create an explainable framework for multipath detection. Our key contributions include: (1) the development of an interpretable LSTM architecture for processing GNSS observables, including multipath variables, carrier-to-noise ratios, and satellite elevation angles
  (2) the adaptation of the LRP technique for GNSS signal analysis, enabling attribution of model decisions to specific input features
  and (3) the discovery of a correlation between LRP relevance scores and signal anomalies, leading to a new method for anomaly detection. Through systematic experimental validation, we demonstrate that our LSTM model achieves high prediction accuracy across all GNSS parameters while maintaining interpretability. A significant finding emerges from our controlled experiments: LRP relevance scores consistently increase during anomalous signal conditions, with growth rates varying from 7.34% to 32.48% depending on the feature type. In our validation experiments, we systematically introduced signal anomalies in specific time segments of the data sequence and observed corresponding increases in LRP scores: multipath parameters showed increases of 7.34-8.81%, carrier-to-noise ratios exhibited changes of 12.50-32.48%, and elevation angle parameters increased by 16.10%. These results demonstrate the potential of LRP-based analysis for enhancing GNSS signal quality monitoring and integrity assessment. Our approach not only improves the interpretability of deep learning models in GNSS applications but also provides a practical framework for detecting and analyzing signal anomalies, contributing to the development of more reliable and trustworthy navigation systems.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH