Differential impact of divalent metals on native elongating transcript sequencing (NET-seq) protocols for RNA polymerases I and II.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Abigail K Huffines, David A Schneider

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : PloS one , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 84746

Throughout all domains of life, RNA polymerases (Pols) synthesize RNA from DNA templates, a process called transcription. During transcription, Pols require divalent metal cations for nucleotide addition and cleavage of the nascent RNA after misincorporation or polymerase stalling. Recently, several next-generation sequencing techniques have emerged to study transcription at single-nucleotide resolution in vivo. One such technique, native elongating transcript sequencing (NET-seq), allows for isolation of transcription elongation complexes associated with a specific Pol, defining polymerase occupancy on the DNA template. Originally developed to study RNA polymerase II (Pol II), NET-seq has been adapted for RNA polymerase I (Pol I) and bacterial RNA polymerase. We recently optimized Pol I NET-seq in Saccharomyces cerevisiae, however, we omitted nucleases and their metal cofactors, which are commonly used in Pol II NET-seq. Here, we investigated the effect of CaCl2 ± MNase and MnCl2 ± DNase I on Pol I occupancy. We found that exposure of Pol I to CaCl2 and MnCl2 during NET-seq caused a significant reduction in immunoprecipitation of nascent rRNA compared to the untreated control samples, with a more severe effect when incubated with MnCl2 vs. CaCl2. Surprisingly, in contrast to the Pol I results, we found that metal treatment during Pol II NET-seq did not have a significant effect on nascent transcript capture. Taken together, these observations reinforce the conclusion that transcription elongation complexes formed by Pols I and II have unique characteristics and emphasize the need to carefully consider experimental conditions deployed in all stages of nucleic acid library generation.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH