Compact and voltage-tunable surface plasmon polariton-based optical neural networks.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Junxiong Guo, Wen Huang, Lingfei Li, Yu Liu, Xiang Wang, Yongli Wu, Chengwang Yang, Chengyan Zhong

Ngôn ngữ: eng

Ký hiệu phân loại: 004.33 Real-time processing

Thông tin xuất bản: United States : Optics letters , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 89206

Optical neural networks (ONNs) offer advantages in parallel processing, low power consumption, and high-speed operation. However, existing ONN designs face challenges in miniaturization, stability, tunability, and integration. This study proposes a graphene surface plasmon polariton (GSPP) waveguide switch array for all-optical neural networks. The design features a compact structure with a lateral area of only 0.045 boldsymbol{\mathrm{\mu}}{{\mathbf m}^2} Numerical simulations show that within the 30.2 to 49.4 THz range, the transmission rate is tunable from 0 to 0.875, accurately simulating synaptic weights in ONNs. The compact switch array achieves a recognition accuracy of 93.83% on the CIFAR-10 dataset, demonstrating its potential for high-speed, low-power, and highly integrated neural network computing platforms.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH