Cancer vaccines have garnered considerable interest for cancer immunotherapy. However, their effectiveness is limited by inadequate proliferation, activation, and tumor infiltration of cytotoxic T lymphocytes (CTLs). Inspired by the potent immunostimulatory properties of viral components and the exposure of calreticulin during immunogenic cell death (ICD) triggered by viral infections
in this study, we describe cGAMP@vEVs, a virus-mimicking nanovaccine strategy by engineering tumor cell-derived extracellular vesicles through virus infection, which co-load both personalized and broad antigen repertoire as well as multiple immune adjuvants to potently elicit antitumor immunity. We demonstrate that cGAMP@vEVs exhibit both the commendable lymph node-tumor dual-targeting and stimulator of interferon genes (STING) pathway-activating capacity, which drive the proliferation and activation of tumor-specific CD8