Open-source LLMs for text annotation: a practical guide for model setting and fine-tuning.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Meysam Alizadeh, Juan D Bermeo, Shirin Dehghani, Fabrizio Gilardi, Maria Korobeynikova, Maël Kubli, Zeynab Samei, Mohammadmasiha Zahedivafa

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Singapore : Journal of computational social science , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 89923

UNLABELLED: This paper studies the performance of open-source Large Language Models (LLMs) in text classification tasks typical for political science research. By examining tasks like stance, topic, and relevance classification, we aim to guide scholars in making informed decisions about their use of LLMs for text analysis and to establish a baseline performance benchmark that demonstrates the models' effectiveness. Specifically, we conduct an assessment of both zero-shot and fine-tuned LLMs across a range of text annotation tasks using news articles and tweets datasets. Our analysis shows that fine-tuning improves the performance of open-source LLMs, allowing them to match or even surpass zero-shot GPT SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s42001-024-00345-9.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH