Dissecting tumor transcriptional heterogeneity from single-cell RNA-seq data by generalized binary covariance decomposition.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Peter Carbonetto, Yusha Liu, Kay F Macleod, Scott A Oakes, Matthew Stephens, Jason Willwerscheid

Ngôn ngữ: eng

Ký hiệu phân loại: 553.453 Tin

Thông tin xuất bản: United States : Nature genetics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 90063

Profiling tumors with single-cell RNA sequencing has the potential to identify recurrent patterns of transcription variation related to cancer progression, and to produce therapeutically relevant insights. However, strong intertumor heterogeneity can obscure more subtle patterns that are shared across tumors. Here we introduce a statistical method, generalized binary covariance decomposition (GBCD), to address this problem. We show that GBCD can decompose transcriptional heterogeneity into interpretable components-including patient-specific, dataset-specific and shared components relevant to disease subtypes-and that, in the presence of strong intertumor heterogeneity, it can produce more interpretable results than existing methods. Applied to data on pancreatic ductal adenocarcinoma, GBCD produced a refined characterization of existing tumor subtypes, and identified a gene expression program prognostic of poor survival independent of tumor stage and subtype. The gene expression program is enriched for genes involved in stress responses, and suggests a role for the integrated stress response in pancreatic ductal adenocarcinoma.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH