Behavior of compounds leached from tire tread particles under simulated sunlight exposure.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Bryan Harper, Eunha Hoh, Kelly V Hollman, Natalie Mladenov, Karilyn E Sant, Margaret E Stack

Ngôn ngữ: eng

Ký hiệu phân loại: 150.1943 Philosophy and theory

Thông tin xuất bản: England : Water research , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 90090

 Tire tread particles are microplastics (<
  5 mm) and leach organic chemicals into aquatic environments. It is important to understand the behavior of tire wear compounds in sunlight-exposed waters in terms of their persistence, removal, and transformation. Therefore, we conducted photolysis experiments with leachates from laboratory-generated tire tread particles (TTP) over 72 h in a solar simulator to evaluate the behavior of leached compounds and fluorescent components over time. Compared to initial leachates, simulated sunlight exposure resulted in ∼12 % decrease in dissolved organic carbon, 11 % reduction in the total fluorescence of leachates, and ∼30 % removal of the 213 chromatographic features detected by nontargeted analysis (NTA) using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. A decrease in total chemical abundance determined by NTA was observed, with normalized peak areas decreasing by 36.4% in the 72 h photoirradiated samples and by 13.6% in the dark samples. Fifty-three compounds were tentatively identifiable based on mass spectral matching and among them, 12 compounds were confirmed with authentic standards. Among the 53 compounds, 19 compounds were photo-labile, 27 were photo-resistant, and 7 were photo-transformation products. NTA also identified compounds previously unreported as tire-related compounds. Parallel factor analysis (PARAFAC) modeling of three-dimensional excitation-emission-matrix (EEM) data identified five fluorescent components. PARAFAC component C4 (excitation/emission peak at 285/445 nm) was found to be a fluorescent analog for 6PPD. Rapid double exponential decay kinetics were observed for the 6PPD-like component during photoirradiation. Similarly, the peak fluorescence of commercially available 6PPD exposed to simulated sunlight was reduced by >
 90 % in the first 0.5 h of photoirradiation. 6PPD photodegradation resulted in the production of a fluorescent transformation product resembling PARAFAC Component C2 (with emission at 360 nm). These results prove that EEM fluorescence analyses can serve as a rapid method for kinetics analysis of 6PPD, and may be combined with NTA compound tentative identification to track the behavior of other TTP-derived compounds in experimental studies.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH