In aqueous environments, microplastics (MPs) undergo photoaging, releasing dissolved organic matter (DOM). Disinfection byproducts (DBPs) formation from natural organic matter (NOM) phototransformation has been reported. However, the impact of NOM on the photoaging of MPs (especially nitrogen-containing MPs) and subsequent nitrogenous DBPs (N-DBPs) formation remains unknown. Herein, this study investigated polyamide (PA) with NOM (fulvic acid [FA], humic acid [HA] and biochar-derived DOM [BDOM]) on N-DBPs formation. Results showed that the levels of the main DBPs, N-nitrosamine, formed in the FA+PA, BDOM+PA, and HA+PA systems were 3.0. 2.7 and 1.6 folds higher, respectively, compared to those in the corresponding NOM treatments. NDMA was found to be the dominant N-nitrosamine species, with the highest level of 202 ng/L, exceeding the WHO guideline of 100 ng/L. The main reactive intermediates (RIs) were