Transcatheter aortic valve-in-valve replacement presents a viable, minimally invasive approach to replacing degraded bioprosthetic surgical valves. The major drawback of this technique is poor hemodynamics in the form of patient-prosthesis mismatch and high transvalvular gradients. This is commonly attributable to the reduced valvular diameter from the transcatheter heart valve fixed inside the degraded bioprosthesis. Maximizing this diameter by bioprosthetic valve fracture occurs through a noncompliant, high-pressure balloon to splay the degraded valve outward. Despite its novelty, this has demonstrated improved hemodynamic outcomes and optimal valvular expansion with slightly increased operative risk. In this review, we highlight the technique of bioprosthetic valve fracture, types of suitable balloons and valves, timing in relation to valve-in-valve implantation, safety and efficacy, implications, and future directions.