Investigation of the efficacy and potential pharmacological mechanism of Yupingfeng in treating chronic obstructive pulmonary disease: A meta-analysis and in silico study.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Chen Chen, Ziyi Jiang, Tingyue Kang, Ming Li, Jian Liu, Xiaoying Liu, Ke Wang, Danning Wu, Yunpeng Xu, Lei Zhang, Mingyang Zou

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Ireland : Journal of ethnopharmacology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 91313

ETHNOPHARMACOLOGICAL RELEVANCE: Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death globally, significantly burdening healthcare and economies. Studies show Yupingfeng (YPF) combined with conventional treatments (CT) can effectively control COPD progression, improving lung function and quality of life. AIM OF THE STUDY: This study aims to comprehensively explore the multiple therapeutic effects and potential pharmacological mechanisms of YPF in the treatment of COPD through various approaches, including meta-analysis, network pharmacology, molecular docking, and molecular dynamics simulations. MATERIALS AND METHODS: We searched PubMed, Embase, Cochrane Library, Web of Science, CNKI, Wanfang Data, VIP, and CBM databases up to June 2024. Meta-analysis was conducted using Review Manager 5.4 and Stata 16.0. The certainty of evidence was assessed using the GRADE system. Network pharmacology, molecular docking, and dynamics simulations were employed to explore mechanisms and evaluate the binding of YPF's active components to targets. RESULTS: The meta-analysis showed that YPF combined with CT significantly improved COPD treatment efficacy compared to CT alone (moderate certainty). Lung function markers, including FEV1% pred (high certainty), FVC (moderate certainty), and FEV1/FVC (high certainty), also improved significantly. Secondary outcomes, such as Traditional Chinese Medicine (TCM) syndrome scores, CAT scores, and inflammatory and immune biomarkers, also showed improvement (low certainty). Network pharmacology identified potential YPF targets, including ESR1, SRC, EP300 and HSP90AA1, possibly involving calcium and cAMP signaling pathways. Molecular docking and dynamics simulations suggested that YPF may exert its effects by stabilizing the binding of isoflavanone to HSP90AA1. CONCLUSIONS: This study demonstrates that YPF combined with CT can enhance the treatment efficacy for COPD, improving lung function and quality of life, with strong anti-inflammatory and immunomodulatory effects, and good safety. The molecular docking and molecular dynamics simulation results suggest that isoflavanone, isorhamnetin, and 14_acetyl_12_senecioyl_2E_8E_10E_atractylentriol may be the active components with strong binding affinity for COPD treatment, with HSP90AA1_isoflavanone showing the best performance in terms of stability and binding energy, second only to the standard ligand, and possibly being one of the key mechanisms of YPF in treating COPD.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH