In this study, millet bran globulin (MBG) and Arabic gum (AG) conjugates were prepared through the Maillard reaction (MR) and applied to curcumin-loaded Pickering emulsions. The effect of MR on MBG-AG conjugates (MBG-AG con) was evaluated by the degree of grafting (DG), the absorbance of intermediate reactants, and the browning index. The emulsifying properties of MBG-AG con with different DGs were assessed using the emulsifying activity index (EAI) and emulsifying stability index (ESI). Curcumin-loaded Pickering emulsions were prepared using optimized conjugates. Results indicated that MR enhanced the conjugates emulsifying properties, leading to improved emulsion performance. Compared to MBG, the optimized conjugates exhibited approximately 252.3 % and 167.1 % increases in EAI and ESI, respectively. The formation of MBG-AG con was confirmed through polyacrylamide gel electrophoresis, Fourier transform infrared, and fluorescence spectroscopy. Morphological changes before and after MR were observed through scanning electron microscopy. In comparison to MBG-stabilized emulsions, conjugate-stabilized emulsions exhibited smaller droplets, higher curcumin encapsulation efficiency (over 80 %), and better apparent viscosity. During simulated digestion, the bioavailability of curcumin reached 88.67 % in Pickering emulsions stabilized by 5 % conjugates. This study demonstrated the potential application of MBG-AG con prepared via MR in stabilizing Pickering emulsions, providing new theoretical insights into curcumin encapsulation.