Advancing structure modeling from cryo-EM maps with deep learning.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Daisuke Kihara, Shu Li, Genki Terashi, Zicong Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 968.91 *Zimbabwe

Thông tin xuất bản: England : Biochemical Society transactions , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 9560

Cryo-electron microscopy (cryo-EM) has revolutionized structural biology by enabling the determination of biomolecular structures that are challenging to resolve using conventional methods. Interpreting a cryo-EM map requires accurate modeling of the structures of underlying biomolecules. Here, we concisely discuss the evolution and current state of automatic structure modeling from cryo-EM density maps. We classify modeling methods into two categories: de novo modeling methods from high-resolution maps (better than 5 Å) and methods that model by fitting individual structures of component proteins to maps at lower resolution (worse than 5 Å). Special attention is given to the role of deep learning in the modeling process, highlighting how AI-driven approaches are transformative in cryo-EM structure modeling. We conclude by discussing future directions in the field.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH