The complete regeneration of deep cutaneous wounds remains a challenge. Development of advanced biomaterials that more closely resemble the natural healing environments of skin is a promising strategy. In the present study, inspired by the human skins, an elastomer-hydrogel bilayer fibrous membrane was fabricated for cutaneous wound healing. The elastomer layer, made of poly (trimethylene carbonate) (PTMC), mimics human epidermis, including a similar wettability (around 80°), a compact structure, flexibility, excellent moisture retention, and bacterial pathogen blocking. The hydrogel fiber layer that directly contacts the wound surface was made of hydrophilic gelatin hydrogel fibers, providing an advanced pro-regeneration microenvironment for wound healing, including a moist environment and a mesh-like structure and patterns. Bioactive agents (e.g. stem cell-derived exosomes) could be feasibly incorporated into the hydrogel fiber layer to further enhance the therapeutic outcome. In vivo studies demonstrated that such biomimetic elastomer-hydrogel hybrid fibrous membrane could dramatically enhance the skin regeneration as evidenced by faster wound closure rates, enhanced vascularization, promoted collagen deposition, reduced inflammation, and promoted skin appendage regeneration. Our work provides a new avenue for designing biomimetic wound dressings for cutaneous wound healing.