The enzymatic preparation of nanostarch exhibits specific and efficient. However, commercial amylases face issues of expensive and time-consuming extraction, which limit their application. This study obtained cassava nanostarch (MCS) from Cassava starch (CS) treated with malt endogenous amylase, followed by structural characterization and property exploration. The results demonstrated that CS was converted into MCS (515 nm) after 4 h of enzymolysis, transitioning from smooth spheres to rough nanoparticles. Compared to CS, the water solubility index of MCS increased from 34.4 % to 82.1 %, and its transparency increased from 55.8 % to 76.8 %. However, the swelling power of MCS decreased from 24.5 g/g to 6.62 g/g. The adsorption capacity of MCS for anthocyanin (226 mg/g) was twice higher than that of CS, conformed to the pseudo-second-order kinetic model and the Freundlich isothermal model. This study could provide new ideas for the green and efficient preparation of nanostarches and a promising activity delivery system.