The aberrant activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome has been implicated in the exacerbation of myocardial damage and the subsequent development of heart failure following myocardial infarction (MI). Inhibiting NLRP3 inflammasome activation offers a promising therapeutic strategy for mitigating MI-related injury, although no NLRP3 inhibitors have received Food and Drug administration (FDA) approval to date. To identify novel NLRP3 inflammasome inhibitors through the repurposing of FDA-approved drugs, Tamibarotene emerged as a potent inhibitor with a favorable safety profile. Mechanistically, Tamibarotene inhibits NLRP3 inflammasome activation independently of retinoic acid receptor activation, binding to Phe410 and Ile417 within the nucleotide-binding and oligomerization (NACHT) domain in an ATPase activity-dependent manner. This interaction further inhibits the assembly of the NLRP3 inflammasome. In a murine model of MI, Tamibarotene significantly reduced myocardial damage and improved cardiac function by inhibiting NLRP3 inflammasome activation. In summary, NLRP3 has been identified as a direct target of Tamibarotene for myocardial repair following MI, indicating that Tamibarotene could serve as a potential precursor for the development of innovative NLRP3 inhibitors.