This review provides a focused coverage of the photophysical properties of noncanonical and synthetic nucleobases reported over the past decade. It emphasizes key research findings and physical insights gathered for prebiotic and fluorescent nucleobase analogs, sulfur- and selenium-substituted nucleobases, aza-substituted nucleobases, epigenetic nucleobases and their oxidation products, and nucleobases utilized for expanding DNA/RNA to reveal central structure-photophysical property relationships. Further research and development in this emerging field, coupled with machine learning methods, will enable the effective harnessing of nucleobases' modifications for applications in biotechnology, biomedicine, therapeutics, and even the creation of live semisynthetic organisms.