Loại tài liệu:    Chỉ tìm trong: 
Tìm được 6 kết quả
Dynamic Bayesian Influenza Forecasting in the United States with Hierarchical Discrepancy (with Discussion) [electronic resource]
Tác giả:
Xuất bản: Bethesda, Md. : Oak Ridge, Tenn: National Institutes of Health (U.S.) ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy , 2019
Bộ sưu tập: Metadata
ddc:  630.5
 
A two-step short-term probabilistic wind forecasting methodology based on predictive distribution optimization [electronic resource]
Tác giả:
Xuất bản: Washington, D.C. : Oak Ridge, Tenn: United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy , 2019
Bộ sưu tập: Metadata
ddc:  621.822
 
Probabilistic Short-Term Wind Forecasting Based on Pinball Loss Optimization [electronic resource] : Preprint
Tác giả:
Xuất bản: Washington, D.C. : Oak Ridge, Tenn: United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy , 2018
Bộ sưu tập: Metadata
ddc:  333.914
 
Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method [electronic resource] : Preprint
Tác giả:
Xuất bản: Washington, D.C. : Oak Ridge, Tenn: United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy , 2017
Bộ sưu tập: Metadata
ddc:  333.79
 
Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators [electronic resource] : Generating short-term probabilistic wind power scenarios via
Tác giả:
Xuất bản: Washington, D.C. : Oak Ridge, Tenn: United States. National Nuclear Security Administration ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy , 2017
Bộ sưu tập: Metadata
ddc:  656.6
 
Storm Tide and Wave Simulations and Assessment
Tác giả: Shih-Chun Hsiao, Wei-Bo Chen, Wei-Bo Chen, Wen-Son Chiang, Wen-Son Chiang, Shih-Chun Hsiao
Xuất bản: Basel, Switzerland: MDPI - Multidisciplinary Digital Publishing Institute , 2021
Bộ sưu tập: Tài liệu truy cập mở
eBook (pdf)
ddc: 
 
1

Truy cập nhanh danh mục