This research focused on the biology of a group of wood-degrading fungi that cause brown rot in wood, with particular attention to the potential to mimic this biological approach ex situ for bioprocessing lignocellulosic biomass. Supported by the long-standing theory that these fungi use a two-step oxidative/enzymatic approach during brown rot, our team?s objectives were as follows: 1) to determine the discrete timing of lignin modifications, 2) to correlate these alterations with biocatalyst efficiency and ingress into plant cell walls, and 3) to reproduce modifications prior to saccharification for efficient bioprocessing. The core findings of our research were that 1) lignin modifications occur nearly coincident with enzyme secretion during brown rot and 2) there is no specificity to the benefit that a brown rot pretreatment has on the efficacy of cellulases ? it is a general enhancement best predicted by chemical changes to lignin and side-chain hemicellulose sugars. In our work, this meant we could attain and predict broad improvements in saccharification using commercial cellulase cocktails, in some cases more than three-fold of that in untreated biomass. This project was completed with minimal variance from the original project management plan (PMP), resulting in fourteen presentations and posters, four peer-reviewed publications, and one additional publication now in review. The publications have been valuable to other scientists working toward similar goals and have been cited in thirteen peer-reviewed publications written by others since 2010. We are working with ADM to advance application options for industry, building on the lessons learned during this DOE award period.