Gear shifting in today's automatic transmissions is a dynamic process that involves synchronized torque transfer from one clutch to another, smooth engine speed change, engine torque management, and minimization of output torque disturbance. Dynamic analysis helps to understand gear shifting mechanics and supports creation of the best design for gear shift control systems in passenger cars, trucks, buses, and commercial vehicles. Based on the authors' graduate-level teaching material, this well-illustrated book relays how the fundamental principles of hydraulics and control systems are applied to today's automatic transmissions. It opens with coverage of basic automatic transmission mechanics and then details dynamics and controls associated with modern automatic transmissions. Topics covered include: gear shifting mechanics and controls, dynamic models of planetary automatic transmissions, design of hydraulic control systems, learning algorithms for achieving consistent shift quality, torque converter clutch controls, centrifugal pendulum vibration absorbers, friction launch controls, shift scheduling and integrated powertrain controls, continuously variable transmission ratio controls, dual-clutch transmission controls, and more.
Includes bibliographical references (p. 197-200) and index.